Covering Properties of Sum-Rank Metric Codes

Cornelia Ott†, Hedongliang Liu†, Antonia Wachter-Zeh‡

†Institute of Communications Engineering, Ulm University, Germany
‡Institute for Communications Engineering, Technical University of Munich (TUM), Germany

E-mail: cornelia.ott@uni-ulm.de, lia.liu@tum.de, antonia.wachter-zeh@tum.de

Abstract—The sum-rank metric can be seen as a generalization of both, the rank and the Hamming metric. It is well known that sum-rank metric codes outperform rank metric codes in terms of the required field size to construct maximum distance separable codes (i.e., the codes achieving the Singleton bound in the corresponding metric). In this work, we investigate the covering property of sum-rank metric codes to enrich the theory of sum-rank metric codes. We intend to answer the question: what is the minimum cardinality of a code given a sum-rank covering radius? We show the relations of this quantity between different metrics and provide several lower and upper bounds for sum-rank metric codes.

Index Terms—sum-rank metric codes, covering radius, cardinality, bounds

I. INTRODUCTION

The sum-rank metric was implicitly used in space-time coding schemes [1], [2] and explicitly introduced in network coding literature [3]. It can be seen as a generalization of the Hamming metric and the rank metric. The theory of sum-rank metric codes attracted a lot of research interest in recent years because of the existence of maximum sum-rank distance (MSRD) codes (i.e., codes achieving the Singleton bound in sum-rank metric) with sub-exponential alphabet size. Unlike in the rank-metric, non-trivial perfect codes can be constructed in the sum-rank metric [5]. In [6], [7] bounds on the cardinality (e.g., sphere-packing and Gilbert-Varshamov bounds) and other properties (e.g., existence and duality of MSRD codes) for sum-rank metric codes have been considered. Code constructions and decoding algorithm have been extensively studies recently [4], [6], [8]–[16]. Some of these codes have found applications in distributed data storage [17], others in aspects of network coding [9], and space-time codes [18]. A detailed summary on properties and applications of sum-rank metric codes can be found in a recent survey [19].

The covering radius is a basic geometric parameter of a code and can be viewed as a measure of performance of a code. To be precise, the covering radius of a code corresponds to the maximum weight of a correctable error by the code. This quantity has been extensively studied for the Hamming metric (e.g., [20]–[22]). For the rank metric, the covering property has been studied in [23], [24]. For the sum-rank metric, this quantity has not been studied so far, to the extent of the knowledge of the authors. In this work we extend the bounds from [23] to sum-rank metric codes.

This paper is organized as following: In Section II we introduce the notations used throughout the paper, the sum-rank metric and the covering problem. The relations of covering radius and the minimum cardinality of codes given a covering radius in the rank, the sum-rank and the Hamming metric are shown in Section III. In Section IV, we present the main results of this work, several lower and upper bounds on the minimum cardinality of a codes given a sum-rank covering radius. Finally, we conclude this paper in Section V.

II. PRELIMINARIES

Let \(q \) be a prime power and \(m, n, \ell, \eta \) positive integers, \(\mathbb{F}_q \) a finite field with \(q \) elements and \(\mathbb{F}_{q^m} \) its extension field. We consider in this paper codes as subsets of \(\mathbb{F}_{q^m}^n \), where each vector \(x = [x_1] \ldots [x_\ell] \in \mathbb{F}_{q^m}^n \) consists of \(\ell \) blocks \(x_1, \ldots, x_\ell \in \mathbb{F}_{q^m}^n \) of length \(\eta \). Hence we assume \(n = \ell \cdot \eta \).

Since \(\mathbb{F}_{q^m} \) can be seen as an \(m \)-dimensional vector space over \(\mathbb{F}_q \), we can represent a vector \(x_i \in \mathbb{F}_{q^m}^n \) as a matrix \(X_i \in \mathbb{F}_q^{m \times n} \). The rank of \(x_i \) is defined as the rank of the matrix \(X_i \), i.e., \(\text{rk}(x_i) := \text{rk}(X_i) \). For \(x_i \in \mathbb{F}_{q^m}^n \) it holds that \(\text{rk}_q(x_i) \in \{0, \ldots, \mu\} \), where \(\mu := \min\{m, \eta\} \).

A. Sum-Rank Metric

Definition 1. Let \(x = [x_1] \ldots [x_\ell] \in \mathbb{F}_{q^m}^n \). The (\(\ell \))-sum-rank weight of \(x \) is defined as

\[\text{wt}_{SR,\ell}(x) := |\text{rk}_q(x_i)| \rightarrow \mathbb{N}, \quad x \mapsto \sum_{i=1}^\ell \text{rk}_q(x_i). \]

For two vectors \(x, x' \in \mathbb{F}_{q^m}^n \) the (\(\ell \))-sum-rank distance is defined as

\[d_{SR,\ell} : \mathbb{F}_{q^m}^n \times \mathbb{F}_{q^m}^n \rightarrow \mathbb{N}, \quad (x, x') \mapsto d_{SR,\ell}(x, x') := \text{wt}_{SR,\ell}(x - x'). \]

For a subspace \(V \subset \mathbb{F}_{q^m}^n \), we define the (\(\ell \))-sum-rank distance of a vector \(x \in \mathbb{F}_{q^m}^n \setminus V \) to the subspace \(V \) as follows:

\[d_{SR,\ell}(x, V) = \min_{v \in V} \{d_{SR,\ell}(x, v)\}. \]

The (\(\ell \))-sum-rank distance \(d_{SR,\ell} \) is a metric over \(\mathbb{F}_{q^m}^n \), the so-called sum-rank metric. Since (\(\ell \))-sum-rank metric becomes rank metric for \(\ell = 1 \) and Hamming metric for \(\ell = n \), we denote throughout the paper by \(\text{wt}_{SR,1} \), \(\text{wt}_{SR,n} \), \(d_{SR,1} \) and \(d_{SR,n} \) the weight and the distance in rank metric (\(\ell = 1 \)) and in Hamming metric (\(\ell = n \)), respectively.

Note that the sum-rank weight of a vector is at most its Hamming weight. This can be seen when considering \(x =
\[x_1, \ldots, x_t \in \mathbb{F}_q^n \] with \(\text{wt}_{SR, \ell}(x) = n - t = \eta - t_1 + \ldots + \eta - t_\ell \) where \(\sum_{i=1}^{\ell} t_i = t \) and each \(x_i \) has \(t_i \) zero entries. For the sum-rank weight one gets \(\text{wt}_{SR, \ell}(x) = \sum_{i=1}^{\ell} \text{rk}_q(x_i) \leq \sum_{i=1}^{\ell} \min\{m, \eta - t_i\} = \sum_{i=1}^{\ell} \eta - t_i = n - t = \text{wt}_{SR, n}(x) \).

Moreover the rank weight of a vector is at most its Hamming weight implies the following Singleton bound in the sum-rank metric.

Theorem 1 ([17, Corollary 4, 5] [9, Theorem 5]). Let \(C \) be a linear \([n, k, d]\) \((\ell, \cdot)\)-sum-rank metric code over \(\mathbb{F}_q^n \). Then it holds
\[
d \leq m \ell - \frac{\mu}{\eta} k + 1,
\]
where \(\mu = \min\{\eta, m\} \).

Codes that fulfill this bound with equality are called maximum sum-rank distance (MSRD) codes.

B. Covering Property

In this paper, we study lower and upper bounds on the cardinality of a code given its covering radius.

Definition 4. Let \(C \) be a linear \([n, k, d]\) \((\ell, \cdot)\)-sum-rank metric code over \(\mathbb{F}_q^n \). The covering radius of \(C \) is the smallest integer \(\rho_{SR, \ell} \) such that any vector \(x \in \mathbb{F}_q^n \) has at most sum-rank distance \(\rho_{SR, \ell} \) to some codeword \(c \in C \). In other words, \(\rho_{SR, \ell} \) is the maximal sum-rank distance from any vector to its nearest codeword i.e., \(\rho_{SR, \ell} = \max_{x \in \mathbb{F}_q^n} \{d_{SR, \ell}(x, C)\} \). Analogously we denote by \(\rho = \max_{x \in \mathbb{F}_q^n} \{d(x, C)\} \) the metric independent covering radius.

For two codes \(C \subset C' \subset \mathbb{F}_q^n \) it is known that their covering radii \(\rho \geq \rho' \), independent of metric. It can be shown that \(\rho \) is at least the minimum distance \(d' \) of \(C' \). To see this, choose \(x \in C' \setminus C \) which leads to \(d(x, C) \geq d' \), \(\forall c \in C' \) and therefore \(\rho \geq d' \). It follows that \(\min_{x \in \mathbb{F}_q^n} \{d(x, C)\} \geq d' \). Hence \(\rho = \max_{x \in \mathbb{F}_q^n} \{d(x, C)\} \geq d' \). This leads to the definition of maximal codes.

Definition 5. A linear \([n, k, d]\) code \(C \) is called maximal if there is no other \([n, k, d]\) code \(C' \) such that \(C \subset C' \).

It is common knowledge that the covering radius of a maximal code is smaller than its minimum distance. This fact can be seen since for a maximal \([n, k, d]\) code \(C \) there exists no element \(x \in \mathbb{F}_q^n \setminus C \) such that \(d(x, C) \geq d \); otherwise, one can construct \(C' = \{x\} \cup C \subset C \) with \(d(C') = d \). Rather it holds that \(d(x, C) < d, \forall x \in \mathbb{F}_q^n \setminus C \) and hence \(\rho = \max_{x \in \mathbb{F}_q^n} \{d(x, C)\} < d \).

III. Covering Properties of Sum-Rank Metric Codes

For a given vectorspace \(\mathbb{F}_q^n \) and a given integer \(\rho \) we denote the minimum cardinality of a code \(C \subset \mathbb{F}_q^n \) with sum-rank covering radius \(\rho \) by \(K_{SR, \ell}(\mathbb{F}_q^n, \rho) \). We can express this value as follows: let \(A := \{C \subset \mathbb{F}_q^n : \cup_{c \in C} B_\ell(c, \rho) \supseteq \mathbb{F}_q^n \} \) then \(K_{SR, \ell}(\mathbb{F}_q^n, \rho) = \min_{A \in A} |C| \). We now formulate the sphere covering problem for the sum-rank metric.

Problem 1. Find the minimum number of sum-rank balls \(B_\ell(x, \rho) \) of radius \(\rho \) (with \(x \in \mathbb{F}_q^n \)) that cover the space \(\mathbb{F}_q^n \) entirely. This problem is equivalent to determining the
minimum cardinality $K_{SR,\ell}(F_q^n, \rho)$ of a code $C \subset F_q^n$ with sum-rank covering radius ρ.

There are two extreme cases for the covering radius: $K_{SR,\ell}(F_q^n, 0) = q^{mn}$ and $K_{SR,\ell}(F_q^n, \mu \ell) = 1$. The first statement holds, since from $\rho_{SR,\ell} = \max_{x \in F_q^n} \{d_{SR,\ell}(x, C)\} = 0$ it follows that $d_{SR,\ell}(x, C) = 0, \forall x \in F_q^n$ and therefore $x \in C$, i.e., $C = F_q^n$. For the second statement we consider $\rho_{SR,\ell} = \max_{x \in F_q^n} \{d_{SR,\ell}(x, C)\} = \mu \cdot \ell$ which means that there exists an $x \in F_q^n$ such that $d_{SR,\ell}(x, C) = \mu \cdot \ell$. This is already fulfilled by choosing $C = \{(0, \ldots, 0)\}$. To consider non-trivial cases, we assume $0 < \rho_{SR,\ell} < \mu \cdot \ell$.

For a fix code $C \subset F_q^n$, the relation between the covering radii in rank and Hamming metric is well known. In the following we classify the covering radii in sum-rank metric into this relation.

Lemma 1. Let $C \subset F_q^n$ then it holds for its corresponding covering radii $\rho_{SR,1}, \rho_{SR,\ell}$ and $\rho_{SR,n}$ in the rank, the sum-rank and the Hamming metric that

$$\rho_{SR,1} \leq \rho_{SR,\ell} \leq \rho_{SR,n}.$$

Proof. Since $wt_{SR,1}(x) \leq wt_{SR,\ell}(x) \leq wt_{SR,n}(x)$ for a fix $x \in F_q^n$ it follows that $d_{SR,1}(x, C) \leq d_{SR,\ell}(x, C)$ and hence $\max_{x \in F_q^n} \{d_{SR,1}(x, C)\} \leq \max_{x \in F_q^n} \{d_{SR,\ell}(x, C)\} \leq \max_{x \in F_q^n} \{d_{SR,n}(x, C)\}$.\hfill \square

We give in the following theorem the relation between the minimum cardinality of a code $C \subset F_q^n$ with a fix covering radius ρ in the rank, the sum-rank metric and the Hamming metric.

Theorem 2. For $0 < \rho < \mu \cdot \ell$, it holds $K_{SR,1}(F_q^n, \rho) \leq K_{SR,\ell}(F_q^n, \rho) \leq K_{SR,n}(F_q^n, \rho)$.

Proof. Let $A_{SR,\ell} := \{ C \subset F_q^n \mid \bigcup_{i \in I} B_i(c, \rho) \supseteq F_q^n \}$ be the set of codes with sum-rank covering radius ρ. Since $wt_{SR,1}(x) \leq wt_{SR,\ell}(x) \leq wt_{SR,n}(x)$ for a fix $x \in F_q^n$, one gets $\bigcup_{i \in I} B_i(c, \rho) \supseteq \bigcup_{i \in I} B_i(c, \rho) \supseteq \bigcup_{i \in I} B_i(c, \rho)$ and hence it follows that $A_{SR,1} \supseteq A_{SR,\ell} \supseteq A_{SR,n}$. With $K_{SR,\ell}(F_q^n, \rho) = \min_{C \in A_{SR,\ell}} |C|$ the statement follows.\hfill \square

IV. BOUNDS FOR THE SPHERE COVERING PROBLEM

For the rank metric, a lower and an upper bound on the minimum cardinality of a code with given covering radius was derived in [23, Proposition 6]. The lower bound is called sphere covering bound. We give in the following the sum-rank metric analogue sphere covering bound.

A. Lower Bounds

Theorem 3 (Sphere Covering Bound). For the minimum cardinality of a code $C \subset F_q^n$ with sum-rank covering radius $0 < \rho < \mu \cdot \ell$ the following inequality holds:

$$q^{mn} \frac{\min_{\rho_{SR,\ell}(\rho)}}{\Vol_{S_{\ell}}(\rho)} \leq K_{SR,\ell}(F_q^n, \rho).$$

Proof. If it is possible to cover the whole space F_q^n with balls of radius ρ without overlapping any two balls, then $q^{mn} \Vol_{S_{\ell}}(\rho) = K_{SR,\ell}(F_q^n, \rho)$. This is only possible for perfect sum-rank metric codes. In contrast to the rank metric case where no nontrivial perfect codes exist, in the sum-rank metric such codes indeed exist, since there are nontrivial perfect codes in the Hamming metric, which are included in the sum-rank metric when considering the number of blocks $\ell = n$. If there are overlapping balls then $q^{mn} \Vol_{S_{\ell}}(\rho) < K_{SR,\ell}(F_q^n, \rho)$. \hfill \square

In order to calculate the bound exactly one needs the exact volume of a ball for a given sum-rank radius. Therefore we need the number of $m \times n$ matrices over F_q for a given rank $t \leq \min\{m, n\}$, which we denote by

$$\Vol_{B_{\ell}}(t) := \frac{n}{t} \prod_{\ell_{i=0}}^{t-1}(q^{m} - q^i)$$

(see e.g., [27]), where $\frac{n}{t} \prod_{\ell_{i=0}}^{t-1}(q^{m} - q^i)$ denotes the Gaussian binomial coefficient, which is is defined by the number of t-dimensional subspaces of F_q^n. Hence the volume of a sphere containing all vectors in F_q^n of sum-rank weight t is $\Vol_{S_{\ell}}(t) = \Vol_{B_{\ell}}(t) \prod_{\ell_{i=1}}^{t} \Vol_{M_q}(\eta, m, t_i)$ and therefore the volume of a ball of sum-rank radius t is

$$\Vol_{B_{\ell}}(t) = \sum_{j=0}^{t} \prod_{\ell_{i=1}}^{t} \Vol_{M_q}(\eta, m, t_i).$$

Note that this can be computed in complexity $O(\ell^2 t^3 + \ell d^t (m+\eta) \log(q))$ using the efficient algorithm for computing $\Vol_{S_{\ell}}$ in [13, Theorem 6 and Algorithm 1].

In [13, Theorem 5] an upper bound on the sphere size $\Vol_{S_{\ell}}(\rho)$ was derived. We use this bound to formulate a simplified version of the sphere covering bound. Define

$$\gamma_q := \prod_{\ell_{i=1}}^{t}(1 - q^{-i})^{-1}.$$

Note that γ_q is monotonically decreasing in $q > 1$ with a limit of 1, and e.g., $\gamma_2 \approx 3.463, \gamma_3 \approx 1.785$, and $\gamma_4 \approx 1.452$.

Theorem 4 (Simplified Sphere Covering Bound). For the minimum cardinality of a code $C \subset F_q^n$ with sum-rank covering radius $0 < \rho < \mu \cdot \ell$ the following inequality holds:

$$q^{mn - \rho(m+\eta-\rho)} \rho_{\ell}^{-\ell-1} \gamma_q \leq K_{SR,\ell}(F_q^n, \rho).$$

Proof. In [13, Theorem 5] the following upper bound on the sphere size $\Vol_{S_{\ell}}(\rho)$ was given:

$$\Vol_{S\ell}(\rho) \leq \left(\ell + \rho - 1\right) \gamma_q^{\rho(m+\eta-\rho)}.$$

Since $\Vol_{B\ell}(\rho) = \sum_{\rho_{\ell=1}}^{\rho} \Vol_{S\ell}(\rho) \leq \rho \Vol_{B\ell}(\rho)$ for $\rho > 1$, this gives an upper bound on $\Vol_{B\ell}(\rho)$. Together with Theorem 3 we get the claim by plugging in the upper bound on $\Vol_{B\ell}(\rho)$.\hfill \square

For the rank metric it was shown in [24, Proposition 7] that a code $C \subset F_q^n$ with covering radius $0 < \rho < n < m$ consists of at least three codewords. We extend this result to the sum-rank metric. In contrast to [24], there is no restriction on the relation between n and m.

Theorem 5. For the covering radius ρ fulfilling $0 < \rho < \mu \cdot \ell$ the minimum cardinality $K_{SR,\ell}(F_q^n)$ of a code is greater than 3.

Proof. We assume there exists a code $C \subset F_q^n$ of length n with $|C| = 2$ and covering radius $\rho < \mu \cdot \ell$. W.l.o.g., we suppose $C = \{0, c\}$. In order to get the smallest possible covering radius ρ we choose c of sum-rank weight $\mu \ell$ such that the cardinality of the union of the balls with radius ρ around the two codewords $\{B_0(0, \rho) \cup B_0(c, \rho)\}$ is maximal. The code $C' := \langle c \rangle$ is a linear $[n, 1, \mu \ell]$, sum-rank metric code. Therefore any $x \in C' \setminus C$ has sum-rank distance $\mu \ell$ to C, i.e., $\rho = \mu \ell$, which is a contradiction to the assumption $\rho < \mu \cdot \ell$. Note that choosing the sum-rank weight of c smaller cannot lead to a smaller covering radius. \hfill \Box

In the following we give a nontrivial lower bound on the minimum cardinality of a code with given covering radius, which is the sum-rank metric analogue bound to the bound derived in [23, Proposition 8]. A special feature of this bound is, that the right hand side is a monotonically increasing function in k, where $0 < k \leq \lceil \log_q (K_{SR,\ell}(F_q^n, \rho)) \rceil$. This fact allows to use the bound iteratively. We start with $k = \lceil \log_q (K_{SR,\ell}(F_q^n, \rho)) \rceil$, for which the bound is the tightest. Since we don’t know $K_{SR,\ell}(F_q^n, \rho)$ in general, we use an already known lower bound to calculate the start value of k, for instance the simplified sphere covering bound in Theorem 4. In the i-th iteration we use the bound derived in iteration $i - 1$ to calculate the new value of k. We stop when the value of k cannot be improved anymore by applying the bound.

Theorem 6. Let $0 < \rho < \mu \cdot \ell$ and $0 < k \leq \lceil \log_q (K_{SR,\ell}(F_q^n, \rho)) \rceil$ then

\[
K_{SR,\ell}(F_q^n, \rho) \geq \frac{1}{\Vol_{C_j}(\rho) - \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k})} \cdot \left(q^{mn} - q^{km} \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k}) + \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k} + 1) \cdot \sum_{k' = \max\{1, n - 2k - 1\}}^k (q^{k' \cdot m} - q^{(k' - 1)m}) \right).
\]

Proof. Let $k_{\max} := \lceil \log_q (K_{SR,\ell}(F_q^n, \rho)) \rceil$, $K = q^{m_{\max}}$ and $C := \{c_0, \ldots, c_{K - 1}\} \subset F_q^n$ a code with covering radius ρ and $C_j := \{c_0, \ldots, c_j\} \subset C$ with $0 \leq j \leq K - 1$ such that $d_{SR,\ell}(C_j, C_{j+1}) \geq d_{SR,\ell}(C_{j+1}, C_j)$ for all $j > 0$. Therefore $d_{SR,\ell}(C_j, C_{j+1}) = \min_{0 \leq i \leq j} d_{SR,\ell}(C_i, C_{j+1})$ is the minimum distance $d_{SR,\ell}(C_j)$ of C_j. For $1 \leq k' \leq k_{\max}$ and $q^{m(k' - 1)} \leq j \leq q^{m_{k'}}$, the Singleton Bound for the sum-rank metric (cf. Theorem 1) provides $d_{SR,\ell}(C_j) \geq d_{SR,\ell}(C_{j+1}) \geq d_{min}(C_{j+1}) \geq \rho \cdot \ell - \frac{\rho \cdot \ell}{k'} + 1$. Hence the number of vectors covered by a ball of radius ρ around c_j that are not covered by the union of balls of radius ρ around the codewords in C_{j+1} is at most $\Vol_{C_j}(\rho) - \Vol_{C_j}(\rho, \mu \cdot \ell - \frac{\mu \cdot \ell}{k'} + 1)$. Since the covering radius of C is ρ, the number of vectors covered by the union of balls of radius ρ around the codewords in C is q^{mn} and therefore it follows that

\[
q^{mn} \leq \Vol_{C_j}(\rho) + \sum_{k' = 1}^k (q^{k' \cdot m} - q^{(k' - 1)m}) \cdot \left(\Vol_{C_j}(\rho) - \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k'}) + (K - q^{k \cdot m}) \left(\Vol_{C_j}(\rho) - \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k'})\right)\right).
\]

We transform the inequality to

\[
K \left(\Vol_{C_j}(\rho) - \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k'})\right) \geq q^{mn} - \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k'}) q^{km} + \sum_{k' = 1}^k \left(q^{k' \cdot m} - q^{(k' - 1)m}\right) \cdot \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k'}) q^{km} - \Vol_{C_j}(\rho) \left(\sum_{k' = 1}^k \left(q^{k' \cdot m} - q^{(k' - 1)m}\right) - q^{km}\right).
\]

Since $\Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k'} + 1) = 0$ for $\frac{\mu \ell}{k'} < \mu \ell - 2\rho$ this leads to

\[
K \left(\Vol_{C_j}(\rho) - \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k'})\right) \geq q^{mn} - \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k'}) q^{km} + \sum_{k' = \max\{1, n - 2\rho - 1\}}^k \left(q^{k' \cdot m} - q^{(k' - 1)m}\right) \cdot \Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k'}) q^{km} - \Vol_{C_j}(\rho) \left(q^{km} - 1 - q^{km + 1}\right).
\]

This proofs the claim. \hfill \Box

To derive an explicit lower bound from Theorem 6 we need an expression for the intersections of two balls $\Vol_{C_j}(\rho, \mu \ell - \frac{\mu \ell}{k'})$ in the sum-rank metric. Deriving such an expression is an ongoing work.

B. Upper Bounds

An upper bound on the minimum cardinality of a code with given covering radius for the rank metric case was derived in [23, Proposition 6]. In the following we extend the bound to the sum-rank metric.

Theorem 7. For the minimum cardinality of a code $C \subset F_q^n$ with sum-rank covering radius $0 < \rho < \mu \cdot \ell$ the following inequality holds: $K_{SR,\ell}(F_q^n, \rho) \leq q^{m(n - \rho)}$.

Proof. Consider a systematic generator matrix $G = (I | A)$ of a code C. For each vector $x = (x_1, \ldots, x_n) \in F_q^n$ there exists a codeword $c = (x_1, \ldots, x_k, c_{k+1}, \ldots, c_n) \in C$ with $d_{SR,\ell}(x, c) = \text{wt}_{SR,\ell}(x, c) = \text{wt}_{SR,\ell}(0, \ldots, 0, c_{k+1}, \ldots, c_n) \leq n - k$ for each $x \in F_q^n$ and hence $\rho = \max_{x \in F_q^n} d_{SR,\ell}(x, C) \leq n - k$. Therefore $\min_{c \in C} d_{SR,\ell}(x, c) \leq n - k$ for each $x \in F_q^n$ and hence $\rho = \max_{x \in F_q^n} d_{SR,\ell}(x, C) \leq n - k$. This leads to the upper bound $K_{SR,\ell}(F_q^n, \rho) \leq |C| = q^{mk} \leq q^{m(n - \rho)}$. \hfill \Box
To prove the next results we require the following definition of Elementary Linear subspaces and their properties.

Definition 6. Let \(V := \langle b_1, \ldots, b_k \rangle \subset \mathbb{F}_q^m \) with \(\dim(V) = k \) and \(b_i \in \mathbb{F}_q^m, \forall i \in \{1, \ldots, k\} \) then \(V \) is called an Elementary Linear subspace of \(\mathbb{F}_q^m \). We denote the set of all Elementary Linear subspaces of \(\mathbb{F}_q^m \) with \(\dim(V) = k \) by \(\mathcal{E}_k(\mathbb{F}_q^m) \).

Lemma 2. [24] Let \(v \in \mathbb{F}_q^m \) and let \(\mathcal{E} \) be the set of all Elementary Linear subspaces of \(\mathbb{F}_q^m \) dimension of \(k \). Then \(wt_{SR,1}(v) \leq k \) if and only if \(v \in \mathcal{E} \).

Lemma 3. [24, Lemma 1] Each vector \(x \in \mathbb{F}_q^n \) with \(wt_{SR,1}(x) = k \) belongs to a unique Elementary Linear subspace \(\mathcal{V} \in \mathcal{E}_k(\mathbb{F}_q^m) \).

Lemma 4. [23, Lemma 10] Let \(u > 1, r < n \), \(\mathcal{V} \in \mathcal{E}_r(\mathbb{F}_q^m) \) and let \(f_u : \mathbb{F}_q^m \to \mathbb{F}_{q^{m+u}}, (v_0, \ldots, v_{n-u-1}) \mapsto (f_u(v_0), \ldots, f_u(v_{n-u-1})) \) be a linear bijective mapping such that \(f(\mathbb{F}_q^m) = \mathbb{F}_{q^{m+u}} \). Then the image \(f(\mathcal{V}) \) is a subset of an Elementary Linear subspace of \(\mathbb{F}_{q^{m+u}} \) of dimension \(r \). Moreover \(f \) is a bijection between \(\mathcal{E}(\mathbb{F}_{q^{m+u}}) \) and \(\mathcal{E}(\mathbb{F}_{q^{m+u}}) \).

In order to derive a non-trivial upper bound we need the following result which enables us to construct a code with a given covering radius using an MSRD code over a smaller field with the same covering radius, length and dimension. This construction was proposed for the rank metric in [23, Proposition 10]. In contrast to [23] we do not assume that \(m \geq n \) but we need a more stringent condition on \(\rho \).

Theorem 8. Let \(C \subset \mathbb{F}_q^m \) be an \([n, n_1, \rho, 1]\) MSRD code having covering radius \(\rho \) and \(f \) be a function defined as in Lemma 4 and \(0 \leq u \cdot \ell \leq \rho \). Then \(f(C) \) is an \([n, (n_1 - \rho)]\) \(\ell \)-sum rank metric code over \(\mathbb{F}_{q^{m+u}} \) with covering radius \(\rho \).

Proof. Since \(f_u : \mathbb{F}_q^m \to \mathbb{F}_{q^{m+u}} \) is a linear bijective mapping \(f(C) \subset \mathbb{F}_{q^{m+u}} \) is a linear code of length \(n \) and dimension \(n_1 - \rho \). We show now that the covering radius of \(f(C) \) is \(\rho \). Let \(A \) and \(B \) be subspaces of \(\mathbb{F}_{q^{m+u}} \) over \(\mathbb{F}_q \) with \(\dim(A) = m \) and \(\dim(B) = u \), where \(A \oplus B = \mathbb{F}_{q^{m+u}} \). We can now express every \(u = [u_1, \ldots, u_n] \in \mathbb{F}_{q^{m+u}} \) as \(u = v + w = [v_1 + w_1, \ldots, v_n + w_n] \) with \(v_i \in A_i, v \in A^q, w_i \in B_i, w \in B \). So \(wt_{SR,1}(u) = \sum_{i=1}^n wt_{SR,1}(w_i) \leq u \cdot \ell \).

Lemma 3 implies that any \(w_i \) belongs to a unique Elementary Linear subspace \(\mathcal{V}_{i} \in \mathcal{E}(\mathbb{F}_{q^{m+u}}) \) for all \(i \in \{1, \ldots, \ell\} \). Moreover the cartesian product of these Elementary Linear subspaces \(\mathcal{V} := \mathcal{V}_1 \times \cdots \times \mathcal{V}_\ell \) is unique as well and \(\mathcal{V} \in \mathcal{E}(\mathbb{F}_{q^{m+u}}) \). Since \(C \subset \mathcal{E}(\mathbb{F}_{q^{m+u}}) \). Since \(C \) is MSRD Lemma 6 implies for any \(\mathcal{V} \in \mathcal{V} := \mathcal{V}_1 \times \cdots \times \mathcal{V}_\ell \in \mathcal{E}(\mathbb{F}_{q^{m+u}}) \wedge \sum_{i=1}^\ell \dim(\mathcal{V}_i) = \mu \ell - \frac{\ell}{n} k \) that \(\mathcal{V} \in \mathcal{E}(\mathbb{F}_{q^{m+u}}) \). Together with Lemma 4 it follows that we can express \(v = f(c + e) = f(c) + f(e) \) with \(c \in C \) and \(e = [e_1, \ldots, e_\ell] \) with \(e \in \mathcal{V} \) and \(f(V) \subset \mathcal{W} \). Hence \(f(e) \in \mathcal{W} \) and so \(d_{SR,1}(u, f(c)) \geq \rho \). Hence \(d_{SR,1}(u, f(c)) \leq \rho \) and therefore \(d_{SR,1}(u, f(C)) \leq \rho \).

Finally we give a non-trivial upper bound on the minimum cardinality of a code analogue to the result [23, Corollary 6]. Without any restriction on the relation between \(n \) and \(m \).

Theorem 9. Let \(0 \leq \rho \leq \mu \cdot \ell \) then

\[
\mathcal{K}_{SR,1}(\mathbb{F}_{q^m}; \rho) \leq q^{\lfloor \mu \ell - \frac{\ell}{n} k \rfloor}.
\]

Proof. We can construct a linear MSRD code \(C \) over \(\mathbb{F}_{q^m} \) of length \(n \), dimension \(n - k \) and covering radius \(\nu \), where \(\nu := m - \lceil \frac{n}{\mu} \rceil \).

Let \(f : \mathbb{F}_{q^m} \to \mathbb{F}_{q^m} \) be a sum-rank preserving...
mapping. Using Theorem 8, $f(C)$ has covering radius ρ. So one gets
\[
K_{\text{SR},\ell}(F_q^n, \rho) \leq |f(C)| - |C| = q^{(m-1)(\ell+1)}(n-\rho).
\]

In the following we apply [24, Lemma 7] to the sum-rank metric.

Lemma 7. Let n, n', ρ, ρ', m be nonnegative integers and $m > 0$, then $K_{\text{SR},\ell}(F_q^{n+n'}, \rho + \rho') \leq K_{\text{SR},\ell}(F_q^n, \rho) \cdot K_{\text{SR},\ell}(F_q^{n'}, \rho')$.

Proof. Let $x, y \in F_q^n$ and $x', y' \in F_q^{n'}$. We consider $(x|x'), (y|y') \in F_q^{n+n'}$. Then it holds that $d_{\text{SR},\ell}((x|x'), (y|y')) \leq d_{\text{SR},\ell}(x, y) + d_{\text{SR},\ell}(x', y')$. Note that equality holds if $\frac{n+n'}{m}$ divides n (and therefore as well n'). For any linear subspaces $C \subset F_q^n$ and $C' \subset F_q^{n'}$, it holds for the sum-rank covering radii of the two subspaces C, C' and their direct sum $C \oplus C'$ that $\rho_{\text{SR},\ell}(C \oplus C') \leq \rho_{\text{SR},\ell}(C) + \rho_{\text{SR},\ell}(C')$.

Using Lemma 7 we can give now one more upper bound analogue to the bound for the rank metric case given in [23, Proposition 11]. For the sum-rank metric the bound is dependent on the number of blocks ℓ.

Theorem 10. Let n, m, ρ be fixed positive integers, then for any l with $0 \leq l \leq n$ and for every pair (n_i, ρ_i) fulfilling the following three conditions

(i) $0 < n_i < n$
(ii) $0 \leq \rho_i < \rho$
(iii) $n_i + \rho_i \leq m$

for all $0 \leq i \leq l-1$ with $\sum_{i=0}^{l-1} n_i = n$ and $\sum_{i=0}^{l-1} \rho_i = \rho$ it holds
\[
K_{\text{SR},\ell}(F_q^n, \rho) \leq \min_{\ell \in \{0, \ldots, n\}} q^{(m-1)(\ell+1)(n-\rho)} + \sum_{i=0}^{l-1} \left(\frac{q}{\rho_i}\right)^{n_i} - \sum_{i=0}^{l-1} \left(\frac{q}{n_i}\right)^{\rho_i} + \sum_{i=0}^{l-1} \left(\frac{q}{n_i}\right)^{\rho_i},
\]

Proof. Using Lemma 7 we have $K_{\text{SR},\ell}(F_q^n, \rho) = K_{\text{SR},\ell}(F_q^{n+n'}, \rho) \leq \prod_{i=1}^{l-1} K_{\text{SR},\ell}(F_q^n, \rho_i)$ for all sequences $(n_i, \rho_i)_{0 \leq i \leq l-1}$ with $0 \leq l \leq n$ fulfilling the conditions (i)-(iii). With Theorem 9 one gets for all $i \in \{0, \ldots, l-1\}$ with $0 \leq l \leq n$ that $K_{\text{SR},\ell}(F_q^n, \rho_i) \leq q^{(m-1)(\ell+1)}(n_i-\rho_i)$ and therefore
\[
K_{\text{SR},\ell}(F_q^n, \rho) \leq \prod_{i=1}^{l-1} q^{(m-1)(\ell+1)}(n_i-\rho_i) = q^{\sum_{i=0}^{l-1} (m-1)(\ell+1)}(n-\rho) = q^{m(n-\rho)} + \sum_{i=0}^{l-1} q^{(m-1)(\ell+1)}(n_i-\rho_i) \leq \min_{\ell \in \{0, \ldots, n\}} q^{m(n-\rho)} + \sum_{i=0}^{l-1} \left(\frac{q}{\rho_i}\right)^{n_i} - \sum_{i=0}^{l-1} \left(\frac{q}{n_i}\right)^{\rho_i} + \sum_{i=0}^{l-1} \left(\frac{q}{n_i}\right)^{\rho_i}.
\]

V. CONCLUSIONS AND FUTURE WORK

The sum-rank metric can be seen as a metric that interpolates between the rank and the Hamming metric. In this work, we studied the covering properties of sum-rank metric, in terms of answering the question: what is the minimum cardinality $K_{\text{SR},\ell}(F_q^n, \rho)$ of a code given a sum-rank covering radius. The relations of this quantity in the rank, the sum-rank and the Hamming metric (see Theorem 2) provide trivial bounds for $K_{\text{SR},\ell}(F_q^n, \rho)$ in sum-rank by the known results in the rank and the Hamming metric. In [23] non-trivial bounds on the covering property in rank metric have been given. We extended these bounds to sum-rank metric. The advantages are that the field extension degree does not have to be more than the code length in sum-rank metric and we have more flexibility to choose different block size and block length of a code to obtain the best bound. Moreover, in the lower bound on $K_{\text{SR},\ell}(F_q^n, \rho)$ in Theorem 4, we used an upper bound on the ball size to derive a simplified lower bound which eases the computation.

An open problem left for the lower bound in Theorem 6 is the size of the intersection of two balls, which is ongoing work. In the future, the bounds can be numerically compared for various parameters and to see the gap between the newly derived upper and lower bounds.

REFERENCES

